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STUDY THE SPECTRUM OF THE UPPER TRIANGULAR MATRIX
U(p,0,¢,0,r) OVER THE SEQUENCE SPACES ¢, AND ¢

AVINOY PAUL

ABSTRACT. In this paper, an analysis has been made on the spectrum and fine spectrum of the
upper triangular matrix U(p,0, ¢,0,7) over the sequence spaces c¢g and c¢. We also investigate
the approximate point spectrum and compression spectrum on these spaces.
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1. Introduction

Operator theory is a notable branch of mathematics due to its immense application in diverse
section of physical world. The study of Matrices is fundamental model for operator theory. It has
been observed that the spectral theory contributes to a great extent in extension of the eigenvalues
theory for matrices. Owing to a huge number of appliances of Spectral theory in different field of
science, researchers are now motivating towards this arena of mathematics.

A lots of research has been made on summability methods related to spectrum and fine spectrum
of matrix operators on some sequence spaces. But there is still a lot to be examined on spectra of
some matrix operators transforming one class of sequences into another class of sequences.

Akhmedov and Basar [1], Altay and Basar [2-4] made analysis on the spectra of difference oper-
ator A and generalized difference operator on cy, ¢, ¢, and bv, under various conditions. In recent
period, the fine spectrum of B(r,s,t) over the sequence spaces ¢y and ¢; and ¢, and bv, has been
examined by Furkan et al. [6, 7]. Tripathy and Paul [12, 13] have considered the case of the spectra
and fine spectra of the operator D(r,0,0,s) and D(r,0,s,0,t) over the sequence spaces ¢y and ¢
respectively. Further, Tripathy and Paul [15] have studied the spectrum and fine spectrum of the
operator D(r,0,s,0,t) over the sequence spaces ¢, and bv,.The fine spectra of the upper triangular
matrix A(r, s,t) as well as lower triangular matrix B(r, s, t) on the sequence spaces c and ¢,,, where
(0 < p < 1) have been explored by Karaisa et al. [9]. Srivastava and Kumar [16] have observed
the spectra and the fine spectra of the generalized difference operator A, on ¢;.Further, a lots of
research works on spectra has been carried out by Okutoyi [11] and Rath and Tripathy [12] and
others.

Throughout the paper we denote w, u, ¢, co, £, and bv, be the space of all, bounded, conver-
gent, null, p-absolutely summable and bounded variation sequences respectively.
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2. Preliminaries and Definitions

Let Y be a linear space. We denote B(Y) be the set of all bounded linear operators on Y into
itself. If L € (Y'), where Y is a Banach space then the adjoint operator L* of L is a bounded linear
operator on the dual L* of L defined by (L*@)(y) = @(Ly) forall @ € L* and y € Y.

Let L : D(L) — Y be a linear operator, defined on D(L) C Y, where D(L) denote the domain
of L and Y is a complex normed linear space. For L € B(Y) we associate a complex number
[ with the operator (L — 8I) denoted by Lg defined on the same domain D(L), where I is the
identity operator. The inverse (L—3I)~!, denoted by Lgl is known as the resolvent operator of Lg.

A complex number 3 is called a regular value of L if it satisfies the following conditions
(Bl)LB1 exists,

(BQ)LEl is bounded and,

(Bg)LEl is defined on a set which is dense in Y.

The collection of all regular values 5 of L is called the resolvent set of L and is denoted by
p(L,Y). The complement of the resolvent set over the set of complex C is called the spectrum of
L and is denoted by o(L,Y). Thus the spectrum o(L,Y) consist of 3 € C, for which Lg is not
invertible.

Classification of spectrum:

The spectrum o(L,Y’) is partitioned into three disjoint sets, which are as follows:

(¢) The point (discrete) spectrum denoted by o, (L,Y") consist of 8 € C, for which LEI does not
exist. The elements of point spectrum are called the eigen values of L.

(#) The continuous spectrum denoted by o.(L,Y’) consist of 3 € C, for which LEI exists and
satisfies (B3) but not (Bs) that is LEI is unbounded.

(444) The residual spectrum denoted by o,(L,Y") consist of 8 € C, for which Lgl exists (and
may be bounded or not) but not satisfy (Bs), that is, the domain of LEI is not dense in Y.

This is to be noted that for finite dimensional case, o.(L,Y) = 0,(L,Y) = @ and hence
op(L,Y)=0(L,Y).

Appell et al. [5], has been given more classification of spectrum, which are mentioned below:

Given a bounded linear operator L in a Banach space Y, we call a sequence (y;) in Y as a Weyl
sequence for L if ||yx|| =1 and ||Lyg|| — 0, as k — oo.

(a)The approximate point spectrum: o,,(L,Y) = {8 € C : there exist a Weyle sequence for Lg}

(b)The compression spectrum: o.,(L,Y) = {8 € C:= R(Lg) # Y}

Proposition 2.1 [ [5], Proposition 1.3, p.28] Spectra and subspectra of an operator L € B(Y) and
its adjoint L* € B(Y*)are related by the following relations: (i)o(L*,Y*) =0o(L,Y),
(#)0(L*, ¥*) € 0y (L, Y),
(#3d)op(L*,Y™*) = 00o(L,Y),
(10)0eo(L*,Y™) D op(L,Y),
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(vV)o(L,Y) = 04p(L,Y) Uop(L*, Y*)ooo(L*,Y*) D 0p(L,Y) = 0p(L,Y) Uagy(L*,Y™),

Let £ and F be two sequence spaces and B = (b,;) be an infinite matrix of real or complex
numbers by, where n,k € N = {1,2,...}. Then,it can be stated that B defines a matrix mapping
from FE into F, denote by B : E — F, if for every sequence y = (y,) € E , the sequence

=]

By = {(By)n} is in F where (Bx),, = Y bu yr provided the right hand side converges for every
k=1

n€Nand y € E. By (E : F) we represent the class of all matrices B such that B: E — F.

3. classification of spectrum of U(p,0,¢,0,7) over the space of convergent sequences

Let 7, s,t be non-zero real numbers, and we define the upper triangular matrix as follows

p 0
0 p
U(p,0,¢,0,7)= |0 0

™ o
o o
< O w
Lo w o

Lemma 3.1. The matriz B = (bny) gives rise to a bounded linear operator L € B(c) from ¢ to
itself if and only if

(7) the rows of B in £y and their {1 norms are bounded,

(#) the columns of B are in c,

(#t) the sequence of row sums of B is in c.
The operator norm of L is the supremum of the {1 norms of the rows.

For the above Lemma one may refer to Theorem 1.3.6 of Goldberg [8].

Corollary 3.1: U(p,0,q,0,7) : ¢ — c is a bounded linear operator with ||U(p,0,q,0,7)||(c,c) =
lp| + lal + |-

Lemma 3.2 [see [8], p. 60] L has a dense range if and only if L* is one to one, where L* denote
the adjoint operator of L.

If L : ¢ — c is a bounded matrix operator with matrix B, then L* : ¢* — ¢* acting on ¢ & {1
has a matrix depiction of the structure ;f lgt where x is the limit of the sequence of row sums

of B minus the sum of the columns of B, and b is the column vector whose kth entry is the limit of
the kth column of B for each k € N. For U(p,0,¢,0,7) : ¢ — ¢, the matrix U(p,0,¢,0,7)* € B({;)

is of the form U(p,0,q,0,r)" = (p+g+r Ulp Ooq 0,7)*

Theorem 3.3 U(p,0,q,0,7) : ¢ — ¢ has a dense range if and only if B #p+q+r.

Proof. To prove the result it is sufficient to show that o,[U(p,0,¢,0,7)*,C® ] =p+q+7.
Let, 8 be an eigen value of the operator U(p,0,¢,0,7)* : C® {; — C @ ¢;. Then there exist a
non-zero vector v € {1 satisfy the following system of equations

(p+q+r)jv=pu
P2 = B

qua + pva = Py
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T2 + qu4 + pvs = Pug

(3.1)
puz = PBug
qu3 + pvs = Pus
rv3 + qus + pur = Buy

(3.2)

Now, it is clear from the above system of equations § = p+ ¢ + r is an eigen value corresponds
to the eigen vector (1,0,0, — — —). Next consider 8 # p + q + r then v; = 0. Let, v,, be the first
non-zero entry of the sequence v = (v,,) then from the above system of equations (3.1) and (3.2)
we have rv,,_4 + qUm—2 + pvm = Bv, we obtain that p = § and since g # 0 from the next equation
of either (3.1) or (3.2) we get v,,, = 0 which is a contradiction and hence p+ ¢ + r is the only eigen
value of the given matrix. This completes the proof.

O

Theorem 3.4: 0.,[U(p,0,¢,0,7),c]=p+q+r.
Proof. The result follows from the Theorem 3.3 and the proposition 2.1. O

Theorem 3.5:Let q be a complex number such that \/q?> = —q and define the set

Li={yeC:[-q+/¢—4dr(p—7)|>2lp -]}
Then o.[U(p,0,q,0,7),c] C L.

Proof. Let v = (vg) € ¢1. Then, by solving the equation [U(p,0,q,0,7)* — BIJu = v for u = (uy)
in terms of v, we have,

v

U1 = prgr—pe
— _v2

2 =375
_ v

us = p=5>

Us =33 + (p—B)2>

Us = 325 T B2

_ we —qu {®—r(p—B)}v2
U =325t oo T e

_ v 5 {®—r(p—B)}vs
=35 et o

Consider,a; = ﬁ and ay = ﬁ then we obtain by recursively that a, =

n>3
Now, the above equations can be rewritten as follows

qan_1+ran_2 f
——————» — 10r
p—p
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Uy = o1

ptqt+r—p’
U2 = @102,
U3z = a1vs,

Ug = A104 + A2V2,

Us = a5 + agvs,

Ug = A1V6 + G2V4 + a3v2,

U7 = a1v7 + a2V5 + azvs,

Uug = a1Vg + AV6 + a3vV4 + a4v3,
U9 = A1V9 + A2V7 + A3V5 + A403,

Up = A1V + A2Vp—2 +A3Vp—y + — — — + anvy, when n is even

Up = A1V + A2Vp—2 + A3Vp—g + — — — + a%;uvg, when n is odd
We have,

4, = oot

= (p—PB)an+qapn—1+1ra,_2=0

The characteristic equation of the recurrence relation is (p — 8)u? 4 qu +r = 0.
If A =q%—4(p— B)r #0, then one can easily straightforward calculate that,

_—¢+VA - —q-VA

By — py

p = —F———=— Vn 2> 1,y NS 3.3
Va2 —4r(p—B) 2(p — B) 2(p - B) (3:)
Now, We have,
[un| < lagl|on| + |az||vn—2| + |as||vn-a| + — — — + |a[%]\|v2|, when n is even and
[un| < lagl|vn| + |az||vn—2| + |as||vn-a| + — — — + |a[%]\|v3|, when n is odd
where [ ], denote greatest integer function.
Let, n be even then,
(Jua|+|ua|+|ue| +———lun|) < (lar]+|az|+|as|+———+]az) ) [v2| + (la1| +]az| +|as[+——
—+lagni_1])val+(Ja1|+]az|+laz|+———+|ajz)—a|) |vs|+———+(Ja1|+|az]) |vn—2|+|a1]||vn]
< (laa| + laz| + las| + = = = + lagz) ) (Jve] + |va] + |vg| + — = = + |vn])
(3.4)
Similarly, when n is odd we have,
(lug|+[us|+|ur|+——==[un]) < (la1|+|az|+|as|+———+|az)|)vs| + (Jax | +]az| +]as|+——

—Flaggi1D)lvs|+(lar[+as|+las|+ == =+|apz)—2|)[or[+ = ==+ (Jar | +]az]) [vn—2[+|ar|[vn]

< (laa] + lag| + lag| + = = = + lagg ) (jvs[ + |vs| + [vr] + = = = + [va])
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(3.5)
Adding (3.4) and (3.5) with |u1| we have, for all n € N
(Jun |+ [ua| + g | + [ua] + = = =[un]) < gl + (|aa] +]az| + [as] + — — =+ |agg) ) ([va] +
[va] + |v6| + = — =+ [va]) + (la1] + [az| +|as| + — = = +]ajz) ) (Jvs| + [vs |+ |v7] + = — = + v ]),
=prtl o+ (Jaa| + Jaal + las] + = = = + [agg ) ([or] + [va] + [vs] + [Val + = = = + [on])

By letting n — o0, we have,

llull < il + 1ol £ laxl

Our aim is to show

Do lak| < o0
Two cases arise
Case 1: Let, A = q?> — 4(p — B)r # 0 then relation (3.3) holds for all n € N.
First we prove that if [p1| < 1 then |puo| < 1.

Let, [pn| <1, then | — g+ \/¢* — 4r(p — B)| <2|p - B
Since, \/q722 —q we have, |1+ \/@| < ‘2(17_7;ﬁ)|
. Again, since |1 — /q| < |1+ ,/q] for any q € C,
We have,|1 — /1 — W| < |2(117—(1ﬁ)‘ which implies that |ps| < 1.
Now, since Y o, |ak| < l—\/lz‘(zzil l1]® 4+ 3002 |ual®), hence for |pu1] < 1 we arrive that (uy) €

£1.This implies that U(p,0,q,0,r)* — 8I is onto. Thus, by the Lemma 3.2, we can conclude that
U(p,0,q,0,7) — BI has a bounded inverse and hence o.[U(p,0,¢,0,7),¢] C Ly.

Case 2 : Let, A = ¢> — 4(p — B)r = 0 consider VA =§
From the recurrence relation, we have

By =y

n = V@*—4r(p—B)
= oy l(—s +8)" — (s —48)"}

=gy (20(=5)" 16 + 20(n,3)(=5)" 6% + — — =}, where, C(n,7) = sty
:W{2n(_5)n71 + 20(”, 3)(—S)n7362 + - - _}
Now, if A =0 implies = 0 and we have,
2n —q
an=(—){—"—}",VneN 3.6
o) (36)
Again, for | — ¢| < 2|p — B| we can see that
limn*»ooujil | = |2(;_qﬁ>| <1

Therefore, Y ;- |ax| < co and hence (ux) € ¢;. Hence, by the same argument as in the case 1, we
can conclude that o.[U(p,0,q,0,7),c] C L;. O

Theorem 3.6: Define the set Ly by Ly = {y € C: |—¢++/¢®> —4r(p—7)| > 2|p— |}, then
JP[U(pv 07Q707 T)7 C} = L2
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Proof. Let, U(p,0,q,0,7)u = Bu for u # (0,0,0,— — —) € c.
Then by solving the system of linear equations,

pur + qus + rus = fug
puz + qug + rug = Bus
pus + qus + rur = Pus
pug + que + Tug = Pug
PUk—4 + QU2 + TUt, = PBug_4, ¥,k >5

We have
Us = %qu?; - #M
Ug = %qu4 - guz
P r(p ﬂ)u3 4 e ﬁ)ul
ug = 4 rr(zp B)u4 4 ’8)u2
If p = B then we may choose u; # 0 then u = (u1,0,0,— — —) is an eigen vector corresponding

to p = f and hence 3 € 0,[U(p,0,q,0,7),c]. Next, let p # 3, then from the above equations we
have,for all n > 3

an(p—p)" an_1(p—B)"

U2n+1 = n(fn,l ) ug — — 1:571 ) Uy (3.7)
an(p — )" an—1(p — B)"

Ugnt2 = n(rn—l ) uy — — 17.(n—1 ) U2 (3.8)

2(p—p)
—q++/q*—4r(p—B)
Since 3 and po are the roots of the characteristic equation (p — 8)u? + qu + 7 = 0, we must have

_ . — VA
pape = 55 and py — g = 75

Combining ug = i with relation (3.7) we have

Assume that 8 € Ly. Then we choose u; = us = 1 and uz = and uy = ¢

_ an(p=B)" an—1(p—B)"
Un41 = —a—T U3 — — -1 Ul

= (2= (p — B)(anus — an-1u1)

(3.9)

n—1

= (mui)"*l %(_M?_l + /“Lg_l +tur o~ /Lg:ul_l)

s e ()

=1 71.—1(
Ky Mo
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= (ua)"

Similarly we can show that, ugp4+2 = (u4)™.

2
Next let, A = 0 then ¢? — 4(p — 8)r = 0 and hence p — 8 = 4 and py = pp = ;’“ therefore from
equation (3.6) we get,

an = (22)(=)"
Then, substituting u; = uy = 1,u3 = ug = 52 and a,, in equation (3.9) we get,
U1 = ()2 (22 (=2 )” ' 27”(%)(%%)}
2
— (P (2 - )

= () () %H)

= (=5
= (u3)"
Similarly we can show that, ug,4o = (u4)™ in this case also.
Now,limy, o0 Zi"ﬁ = limp—oo(32)" = = limn—00(3)™ = 0 < oo,therefore u = (u,) € ¢ and

hence 8 € 0,[U(p,0,¢,0,7),c] i.e.Ly C 0,[U(p,0,q,0,7),¢].
Next, we assume that 5 ¢ Lo and to show that 8 ¢ o,[U(p,0,¢,0,7),c].
Since 8 ¢ Lo implies that |ui| < 1. We study the following three cases:

Case 1: Let, |pa| < |u1] < 1 then we have ¢> — 4(p — B)r # 0 and from the relation (3.7) we
get,

an(p=P)" an_1(p—B)"
U2n+1 = fn T - ,ln T U1

_ (P;ﬁ)n—l(p _ [)’)(—an_1U1 + an’LL3)

- Wﬁz)"*l(_“?ilul + by + T g — pBug)

= (-

ar- T )Ul + ( H?EI )US}

= %{Hl}—l (uy — pous) + ?(—Ul + piug)}

If we consider uy — pous = 0 and u; + pyus = 0 then puy = po, a contradiction and hence
ﬂ ¢ UP[U(p7 07‘17077“)76}'

Case 2 : Let, |uz| = |u1| < 1. then ¢> — 4(p — B)r = 0 and from the relation (3.6) we have,

ap = ,Vn e N 3.10
(— ){ 30— ﬁ)} (3.10)
Substituting (3.10) into (3.9), we get the following
Ugpy1 = q: 2 {ur(n = 1) = nugpn }

Similarly we have,

Ugpto = 2(1(5;;/31) {ur(n —1) — nugu }
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Let, u1 = ug = ug = uq = 0, the we have, u = 0, a contradiction and hence 3 ¢ ¢,[U(p,0,¢,0,r),c].
Case 3 : Let, |p1| = |p2| = 1 then we have ¢* —4(p— 8)r = 0 and so | 72| = 1. Substitute (3.10)
into (3.9) we have,
uzns1 = (51)" " H=(n = D(FHus + nus}
Similarly we have,
uzns2 = ()" H{=(n — D(FHuz + nua}

If ug = uo = ug = ug = 0, we get u =0, a contradiction and hence g ¢ o,[U(p,0,¢,0,7),c].
Thus in all the cases we have 0,[U(p,0,¢,0,7),c] C Lo. This completes the theorem. a

Theorem 3.7:0,[U(p,0,q,0,7)*,c*] ={p+q+r}.
Proof. We have, 0p,[U(p,0,q¢,0,7)*,¢*] = 00U (p,0,4,0,7),c] ={p+q+r}. |

Theorem 3.8: ¢,.[U(p,0,q,0,7),c] ={p+q+7}.

Proof. The result follows from the theorem o,.[U(p, 0, ¢,0,7), c] = 0co[U(p, 0, 4,0,7), c]\op[U(p,0,¢,0,7), c].

O
Theorem 3.9: o[U(p,0,q,0,7),c] = L1, where Ly is define as in Theorem3.5.
Proof. Since, o,[U(p,0,q,0,7),¢] Ca[U(p,0,q,0,7),c|, therefore,
{yeC:l-q+ V@ —4r(p—7)>2[p -~} ColU(p,0,4,0,7),(]
Since the spectrum of any bounded operator is closed [10], we have,
{(veC:l—q+ ¢ —dr(p—7)| > 2[p =} ColU(p,0,4,0,7),c]
Again, from Theorem 3.5, Theorem 3.6 and Theorem 3.8 we can conclude that
olU(p,0,4,0,7),c] S{y€C:|—q+/a®> —4r(p—7)| = 2lp — I}
Thus,
olU(p,0,4,0,7),c ={y € C:|—q+ /@ —4r(p—7)| 2 2lp— |} = L
O

Theorem 3.9: o.[U(p,0,q,0,7),c¢] = L3\{p + q + 7}, where
Ly={yeC:|-q+¢>—4r(p—)| =2lp -1}

Proof. Since, o[U(p,0,q,0,r),c] is the disjoint union of ¢,[U(p, 0, ¢,0,7), c], o, [U(p, 0, ¢,0,7), c] and
c.[U(p,0,q,0,r),c| therefore result follows from Theorem 3.6, Theorem 3.8 and Theorem 3.9.
O

4. classification of spectrum of U(p,0,q,0,7) over the space of null sequences

Lemma 4.1. The matriz B = (byy) gives raise to a bounded linear operator L € B(cy) from ¢y to
itself if and only if

(1) the rows of B in €1 and ¢y their norms are bounded,

(2) the columns of B are in cg.
The operator norm of L is the supremum of the {1 norms of the rows.
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For the above Lemma one may refer to Example 8.4.5A of Goldberg [8].

Corollary 4.1: U(p,0,q,0,7) : co — co is a bounded linear operator with ||U(p,0,q,0,7)||c,c) =
||U(p7 O7Q7O7T)H(CU,(;D)~

If L : cg — cp is a bounded linear operator with the matrix B, then it is known that the adjoint
operator L* : ¢ —» c} is defined by the transpose B’ of the matrix B. It should be noted that
the dual space ¢ of ¢ is isometically isomorphic to the Banach space ¢; of absolutely summable
sequences normed by ||y|| = > |yn|.

Theorem 4.2: 0,[U(p,0,q,0,7)*,¢j] = @.

Proof. Suppose U(p,0,q,0,7)*u = Bu for u # 6 = (0,0,0, — ——) € ¢o. Then by solving the system
of linear equations we have,

puy = Buy
qui + puz = Bus
ruy + qug + pus = Pus

(4.1)
and
puz = Puy
qua + pus = Buy
rug + qug + pus = Pug
(4.2)

If w,, is the first non-zero entry of the sequence u = (u,) then from the previous system of
linear equations (4.1) and (4.2), we have rup—4 + qUm—2 + Py, = Buy, and we obtain that 5 =p
and from the next of either (4.1) or (4.2) we get u,, = 0 which is a contradiction .This completes
the proof.

O

Theorem 4.3: 0.,[U(p,0,q,0,7),c0] = 2.

Proof. We have o.,[U(p,0,q,0,7),c0] = 0,[U(p,0,q,0,7)*, ¢§] = &, follows from the Theorem 4.2.
O

Theorem 4.4: ¢, [U(p,0,¢,0,7),co] = &.

Proof. One has 0,[U(p,0,q,0,r)*, c§] = @, therefore U(p, 0, ¢,0,7)* — 1 is not one- to- one for all
B € C and by Lemma 3.2, we can conclude that U(p,0,q,0,7)* — 31 have a dense range for all
B € C and consequently, o..[U(p,0,q,0,7),co] = @. O

Theorem 4.5: 0,[U(p,0,q,0,7),co] = Lo, where Ly is defined as in Theorem 3.6.
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Proof. This is obtained in the similar way used in the proof of Theorem 3.6. O
Theorem 4.6: o.[U(p,0,q,0,r),co] = L1, where Ly is defined as in Theorem 3.5.

Proof. This is obtained in the similar way used in the proof of Theorem 3.5. O

Theorem 4.7: o[U(p,0,q,0,7),co] = L1, where Ly is defined as in Theorem 3.5.

Proof. This is obtained in the similar way used in the proof of Theorem 3.9. O

Theorem 4.8:0.[U(p,0,q,0,7),co] = L3, where L3 is define as in Theorem 3.10.

Proof. Since, o[U(p,0,¢,0,r), co) is the disjoint union of o,,[U(p, 0, ¢,0,7), o], o-[U(p,0,¢,0,7), co]
and o.[U(p,0,q,0,7), co] therefore result follows from Theorem 4.4, Theorem 4.5 and Theorem 4.7.
O

Theorem 4.9: 0,,[U(p,0,q,0,r),co] = Ls, where L3 is define as in Theorem 3.10.

Proof. Since, o[U(p,0,q,0,r),co] = 04p[U(p,0,q,0,7),colUoeo[U(p,0,q,0,7), col, therefore by using
Theorem 4.3, we can conclude o[U(p,0,q,0,7),co] = 04p[U(p,0,4,0,7), col,
since o¢,|U(p,0,q,0,r),co] = @ and hence, 0,,[U(p,0,q,0,r),co] = Ls.

O
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